Ye Zhao Lattice Boltzmann based PDE solver on the GPU

نویسندگان

  • Ye Zhao
  • Y. Zhao
چکیده

Y. Zhao ( ) Kent State University, Department of Computer Science, Kent, OH 44242, USA [email protected] Abstract In this paper, we propose a hardware-accelerated PDE (partial differential equation) solver based on the lattice Boltzmann model (LBM). The LBM is initially designed to solve fluid dynamics by constructing simplified microscopic kinetic models. As an explicit numerical scheme with only local operations, it has the advantage of being easy to implement and especially suitable for graphics hardware (GPU) acceleration. Beyond the Navier–Stokes equation of fluid mechanics, a typical LBM can be modified to solve the parabolic diffusion equation, which is further used to solve the elliptic Laplace and Poisson equations with a diffusion process. These PDEs are widely used in modeling and manipulating images, surfaces and volumetric data sets. Therefore, the LBM scheme can be used as an GPUbased numerical solver to provide a fast and convenient alternative to traditional implicit iterative solvers. We apply this method to several examples in volume smoothing, surface fairing and image editing, achieving outstanding performance on contemporary graphics hardware. It has the great potential to be used as a general GPU computing framework for efficiently solving PDEs in image processing, computer graphics and visualization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-GPU Implementation of a Hybrid Thermal Lattice Boltzmann Solver using the TheLMA Framework

In this contribution, a single-node multi-GPU thermal lattice Boltzmann solver is presented. The program is based on the TheLMA framework which was developed for the purpose. The chosen implementation and optimisation strategies are described, both for inter-GPU communication and for coupling with the thermal component of the model. Validation and performance results are provided as well.

متن کامل

Coupling Lattice Boltzmann Gas and Level Set Method for Simulating Free Surface Flow in GPU/CUDA Environment

We present here a proof-of-concept of a novel, efficient method for modeling of liquid/gas interface dynamics. Our approach consists in coupling the lattice Boltzmann gas (LBG) and the level set (LS) methods. The inherent parallel character of LBG accelerated by level sets is the principal advantage of our approach over similar particle based solvers. Consequently, this property allows for effi...

متن کامل

Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs

The Lattice Boltzmann method (LBM) for solving fluid flow is naturally well suited to an efficient implementation for massively parallel computing, due to the prevalence of local operations in the algorithm. This paper presents and analyses the performance of a 3D lattice Boltzmann solver, optimized for third generation nVidia GPU hardware, also known as ‘Kepler’. We provide a review of previou...

متن کامل

A flexible Patch-based lattice Boltzmann parallelization approach for heterogeneous GPU-CPU clusters

Sustaining a large fraction of single GPU performance in parallel computations is considered to be the major problem of GPU-based clusters. In this article, this topic is addressed in the context of a lattice Boltzmann flow solver that is integrated in the WaLBerla software framework. We propose a multi-GPU implementation using a block-structured MPI parallelization, suitable for load balancing...

متن کامل

The TheLMA project: a thermal lattice Boltzmann solver for the GPU

In this paper, we consider the implementation of a thermal flow solver based on the lattice Boltzmann method (LBM) for graphics processing units (GPU). We first describe the hybrid thermal LBM model implemented, and give a concise review of the CUDA technology. The specific issues that arise with LBM on GPUs are outlined. We propose an approach for efficient handling of the thermal part. Perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007